Standard Detail Drawings

Borough of Naugatuck, Connecticut

ENGINEERING DEPARTMENT

October 2011
Borough of Naugatuck
Standard Detail Drawings

Table of Contents

Auto and Pedestrian Surfaces
- SD-1 Road Cross Section
- SD-2 Permanent Pavement Repair in Borough Street
- SD-3 Temporary Pavement Repair in Borough Street
- SD-4 Cast-in-Place Concrete Curb
- SD-5 Typical Utility Placement in Borough Street
- SD-6 Cross Walk
- SD-15 Gravel Parking Area with Reinforced Concrete Wheel Stop
- SD-22 At Grade Driveway Ramp / Sidewalk
- SD-24 Bituminous Concrete Driveway Apron
- SD-25 Bituminous Concrete Walk
- SD-33 Sidewalk Curb Ramp
- SD-34 Sidewalk Curb Ramp Curved Section
- SD-36 Sidewalk / Granite Curb
- SD-37 Gravel Parking Area
- SD-39 Sidewalk Joints
- SD-40 Speed Bump
- SD-45 Stone Dust Walkway
- SD-46 Concrete Ramp Integral with Driveway
- SD-47 Stone Dust Walkway in Fill Areas
- SD-48 Combined Concrete Sidewalk Details
- SD-51 Trench Repair – Borough Roads

Culvert / Sewer and Structures
- SD-7 Sanitary Sewer Trench Section
- SD-8 Heavy Duty Manhole Frame and Cover
- SD-10 Roof Leader Connection
- SD-11 Typical Pipe Trench
- SD-12 Shallow Manhole
- SD-13 Sewer Line Crossing Section
- SD-14 Sewer Manhole
- SD-16 Deep Drop Manhole Connection (Outside Drop)
- SD-17 Sanitary Sewer Lateral Connection
- SD-19 Catch Basin (ConnDOT)
- SD-28 Sanitary Sewer House Connection and Water Service in Trench
- SD-32 Oil-Water Separator (Grease Trap)
- SD-49 Inside Drop Manhole
- SD-50 Stainless Steel Splash Plate
- SD-52 Dry Hydrant
- SD-53 Typical Sanitary Sewer Trench
- SD-54 Typical Sanitary Sewer Lateral Trench
DRAINAGE STRUCTURES
SD-31 Small Drainage Swale (Grass)
SD-55 Water Bar or Water Break
SD-56 Rip-Rap Level Spreader
SD-57 Retention Basin Example
SD-58 Plunge Pool
SD-59 Headwall
SD-60 Large Drainage Swale (Grass)
SD-61 Type “L” Endwall
SD-62 Dry Retention Basin Example

EARTHWORK / LANDSCAPING
SD-9 Typical Residential Rain Garden
SD-29 Tree Planting
SD-43 Tree Well
SD-44 Concrete Sidewalk with Tree Well
SD-64 Dry Stone Retaining Wall
SD-65 Stone Slope and Stone Slope Paving
SD-66 Unreinforced Segmental Retaining Wall

EROSION CONTROL
SD-21 Erosion Control Blanket on Fill Slope
SD-23 Anti-Tracking Pad
SD-26 Catch Basin Erosion Control
SD-30 Hay Bale Barrier
SD-35 Typical Erosion Control on Slopes
SD-41 Filter Fabric Sediment Control Fence Placement and Construction
SD-42 Hay Bale Sediment Check Dam
SD-68 Sediment Control Systems

INCIDENTALS
SD-18 Bridge Rail
SD-20 Metal Beam Rail
SD-27 Chain Link Double Swing Gate
SD-38 Chain Link Fence
SD-63 Timber Guide Rail
SD-67 Bollard
SD-69 Concrete Stairs
ROAD PAVING WITHIN LAST 8 YEARS

CUT BACK TO BE A NEAT STRAIGHT LINE (TYP.)

MATCH EXISTING PAVEMENT (TYP.)

UNDISTURBED BASE

ACCEPTABLE MATERIAL

10" PROCESSED AGGREGATE BASE

BACKFILLED TRENCH PROPERLY COMPACTED

(SEE TRENCH REPAIR DETAIL)

ROAD PAVING OVER 8 YEARS OLD

NOTES:
ACCEPTABLE MATERIAL COMPACTED IN LIFTS NOT TO EXCEED 12" WITH 95% COMPACTION FOR EACH LIFT. 24" LIFTS MAY BE APPROVED IF COMPACTED BY HOE-PACK WITH 95% COMPACTION FOR EACH LIFT. COMPACTION TO MEET 95% MODIFIED PROCTOR DENSITY REQUIREMENTS. COMPACTION TESTS MAY BE REQUIRED PER INSPECTOR. ALL COSTS FOR COMPACTION TESTS TO BE BORNE BY CONTRACTOR.
STANDARD DETAIL
ENGINEERING DEPARTMENT
BOROUGH OF NAUGATUCK
CAST-IN-PLACE CONCRETE CURB

NOTES:
- Compacted processed aggregate
- Concrete sidewalk
- Concrete sidewalk
- Pitch 1/4" Radius
- Expansion Joint
- 1/2" Preformed
- Material
- 4000 psi (min)
- Class "C" Concrete
- Design plans
- 6" or as per pavement
- Pavement
- Surface of exposed surfaces to be

INTERFACEx
Concrete sidewalk and curb and at sidewalk-building
not more than 4 feet, C at intersection of
preformed expansion joint filler shall be installed
every 10 feet but not less than 6 feet, 1/2" thick
1. Construction joints shall be spaced approximately

2. Formswork shall remain in place for 24 hours

following concrete pouring.
STANDARD DETAIL
ENGINEERING DEPARTMENT
BOROUGH OF NAUGATUCK
AT-GRADE DRIVEWAY RAMP/SIDWALK

NOTE:

FILL TO GRADE WITH COMPACTED 6-9/G.
COMPACTED SUBGRADE.

COMPACTED PROCESSED AGGREGATE.
DRIVEWAY APRON (MATCH EXISTING)

ACCELEGRATE AS NECESARY
BEHIND CONCRETE RAMP.

CLASS "C" CONCRETE

SLOPE VARIES - TYPICALLY 1/4 PER FOOT

5'-6" SOUTH SIDE OF ROAD
15'-6" NORTH SIDE OF ROAD

SMOOTH TACK COAT.

ACCELEGRATE AS NECESARY

NOTE:

APPROACHES DOWN TO MEET DRIVEWAY FROM A DISTANCE OF
NECESSARY TO MATCH EXISTING DRIVEWAY SLOPE SIDWALK
DEPRESS CONCRETE SIDEWALK ACROSS DRIVEWAY WHEN
NOTE:
1. Compaction to be completed in 4" lifts
2. Depths shown are after compaction
CONCRETE OR BITUMINOUS CURBING.

STONE CURBING IF ADJACENT CURBING IS STONE.

NON-WALKING SURFACE

PLANTING OR OTHER

CURBING

OUTER LINE

RAMP

GRASS

SIDEWALK

NEW OR EXISTING SIDEWALK

NEW OR EXISTING CURB RAMP
THE CURBING SHALL HAVE A SMOOTH, QUARRY-SPLIT FRONT FACE, NO EXPOSED DRILL HOLES, NO PROJECTIONS GREATER THAN 3/8" OR DEPRESSIONS GREATER THAN 3/8".
CURVED SECTIONS SHALL BE PROVIDED FOR RADIUS OF 50' OR LESS.

GRANITE CURB

SIDEWALK/GRANITE CURB WITH LIGHT POLE BASE
SIDEWALK JOINTS

1/8" DEEP x 1" WIDE TOOL EDGE (typ.)

1/2" PREFORMED EXPANSION JOINT MATERIAL

DEPTH = 1/4"

TOOLED JOINTS

5'-0" 5'-0" 5'-0"

15'-0"
According to Standard Curbing Practice:
All cast concrete structures to be cured in

NOTE:

Dimensions per Design Plan

2-4 bars, continuous
Compacted subgrade
Process aggregate

2 1/2" Bilinear concrete Class 1
2 1/2" Bilinear concrete Class 2
Surface run off to gutter
1/2" lip to direct
Construction joint
Finished grade

Wire mesh 6x6-6/6

4000 psi (5%-7% air entrained)
Finish perpendicular to curb
Poured concrete slab w/light broom
1/2" Expansion joint
STONE DUST WALKWAY IN FILLED AREAS

- Remove topsoil
- Processed aggregate fill void with
- Topsoil 4" thick
- Furnish and place 2" processed stone dust
- Be compacted to 98% maximum density
- Max slope = 1/5
EXTRUDED CONCRETE CURB AND WALK DETAIL

PLAN VIEW

SECTION A-A

MONOLITHIC CURB AND SIDEWALK DETAIL

NOTE: ALL CAST CONCRETE STRUCTURES TO BE CURED IN ACCORDANCE WITH STANDARD CURING PRACTICE.
SAWCUT AND APPLY TACKCOAT

2-1/2" BITUMINOUS CONCRETE CLASS 2

2-1/2" BITUMINOUS CONCRETE CLASS 1

12" PROCESS AGGREGATE

PIPE BACK FILL
PER TYPICAL PIPE TRENCH DETAIL
CAMPBELL CONSTRUCTION CASTINGS
PATTERN NO. 1007D
HEAVY DUTY MANHOLE FRAME AND COVER

HEAVY DUTY
MANHOLE FRAME AND COVER
BOROUGH OF NAUGATUCK
ENGINEERING DEPARTMENT
STANDARD DETAIL

Scale: NTS
Drawing No. SD-8
Date: 10/2011

229 Church Street, Naugatuck, CT 06770 www.naugatuck-ct.gov
ROOF LEADER CONNECTION

BOROUGH OF NAUGATUCK
ENGINEERING DEPARTMENT
STANDARD DETAIL

229 Church Street, Naugatuck, CT 06770 www.naugatuck-ct.gov
NOTES:

1) ALL PIPE SYSTEMS SHALL BE INSTALLED IN ACCORDANCE WITH STANDARD PRACTICE FOR UNDERGROUND INSTALLATION OF SEWER AND DRAINAGE PIPES AND OTHER GRAVITY FLOW APPLICATIONS.

2) ALL TRENCH WORK TO BE SUPPORTED AS REQUIRED.
HEAVY DUTY, COATED CAST IRON FRAME AND COVER
MINIMUM THREE COURSE BRICK FOR GRADE ADJUSTMENT

ROOF SLAB DESIGNED FOR AASHTO HS20 TRUCK LOADING

4'-0" DIA.

STEEL REINFORCED MANHOLE BASE

6"

BITUMINOUS COATING PER TOWN REQUIREMENTS

2"

RAD. PIPE

MANHOLE BENCH MANUALLY FORMED WITH BRICK

MANHOLE FOUNDATION CRUSHED GRAVEL

SUBGRADE, TRENCH EXCAVATION
SEWER MANHOLE

MANHOLE FOUNDATION CRUSHED GRAVEL

STAINLESS STEEL PIPE CLAMP
WATER TIGHT SEAL
WATER STOP GASKET TO INSURE
PAPER TUBING MUST BE USED IN LAYING CONCRETE
RUBBER GASKET SLIP RING REQUIRED

PRECAST CONCRETE BASES ARE ACCEPTABLE.
CONCRETE BASES ONLY FOR 4" & 6" SMALLER PIPES.
FOR 6" AND LARGER PIPES USE CAST-IN-PLACE
THE TOP OF HIGHEST PIPE ELBOWS TO BE SLIPE 3/8" IN 1' OR GREATER.
BORNE WALLS AND FLOW CHANNELS TO BE BRICK/CHIMERA TO
PRECAST REINFORCED CONCRETE MANHOLE SECTIONS.

O-RING GASKET OR BUILT-IN ROPE MATERIAL (TP)
NON-SHRINK GROUT (TP)

THIS DIMENSION = 5'-0" OR GREATER

CONCRETE GRADE RINGS FRAME AND COVER CENTRED ON MANHOLE
ADJUST TO FRAME WITH 4" MIN-12" MAX OF SOLID BRICK AND MORTAR OR PRECAST
CAST NON-MANHOLE FRAME AND COVER CLEAR OPENING TO SUIT FRAME SPECIFIED.

NOTE: OPENING IS 3/8" OF NON-SHRINK GROUT.
FINISH FACE OF BRICK SMOOTH WITH 3/8" OF NON-SHRINK GROUT.
NOTES:
1. NO FILL TO BE PLACED ON TOP OF DEEP DROP CONNECTION UNTIL CONCRETE HAS SET.
2. CONCRETE TO BE PLACED 8" MIN. ON EACH SIDE OF VERTICAL PIPING. FORMING WILL BE REQUIRED.

NOTE: ANGLE OF ENTRY TO MATCH SLOPE OF PIPE

MAX. PROJECTION INTO M.H. ONE INCH

FOUNDATION MATERIAL

45° - 8" X 8" WYE

45° - 8" ELBOW

1" - 6" MIN.

CLASS 2500 CONCRETE

90° - 8" ELBOW

MANHOLE FOUNDATION CRUSHED GRAVEL

COMPACTED BACKFILL

SHAPE INVERT

6"
INSTALL 4" PLASTIC UTILITY IDENTIFICATION TAPE 2' OVER MAIN LINE AND LATERALS

CONNECT TO SOIL LINE FROM HOUSE

FOR CONNECTION TO EXISTING LATERALS USE APPROVED ADAPTERS AND FLEXIBLE COUPLINGS. CONSTRUCT ON STRAIGHT GRADE (MIN. SLOPE 1/4" PER FOOT). VERIFY UTILITY LOCATION AND ADJUST GRADE. REFER TO SPECIFICATIONS.

PAY LINE LENGTH VARIES

NOTES:
1.) THE END OF THE COMPLETED LATERAL SHALL BE LEFT EXPOSED UNTIL THE ENGINEER HAS TIME TO LOCATE THE LATERAL FOR AN AS–BUILT.
2.) FOR LATERAL CONNECTIONS TO EXISTING PIPE WHERE NO TEE IS PROVIDED, USE INJECTION MOLDED RUBBER GASKETED TEE SADDLE.
TYPE ‘C–L’ CATCH BASIN

5/8" DIA. HOLES FOR 2 #4 BARS 7'-4" LG (TYP.)
1'-8 3/8"
10 3/16"
3" MIN. NORMAL FINISHED GRADING
1'-3 13/16" 7 13/16"
1'-8 3/8"

1/2" MIN
6"
6"
4'-4"
3'-0"
8"
7 13/16"

PER DESIGN PLANS
CLASS ‘A’ CONCRETE OR PRECAST UNIT

TYPE ‘C’ CATCH BASIN

MINIMUM DEPTH PER TOWN REGULATIONS OR DEEPER AS REQUIRED BY DESIGN PLANS
2'-8 3/4"
2'-0"
7 13/16"
VARIABLE

PRECAST TYPE ‘C’ TOP UNIT

IN 4 WALLS AT OR IMMEDIATELY ABOVE THIS ELEVATION
IN SANDY SOILS APPLY DAMP-PROOFING ON 4 WALLS

7 13/16"
3"

DRAINAGE OPENINGS
BRICK, CLASS ‘A’ CONCRETE, MASONRY CONCRETE UNITS.
WHERE BRICK OR MASONRY CONCRETE UNITS ARE USED, CORBELLING WILL BE PERMITTED.
MAXIMUM CORBEL TO BE 3". NO PROJECTION SHALL EXTEND INSIDE OF LIMITS

6" FOUNDATION STONE

CATCH BASIN (ConnDOT)
BOROUGH OF NAUGATUCK
ENGINEERING DEPARTMENT
STANDARD DETAIL
229 Church Street, Naugatuck, CT 06770 www.naugatuck-ct.gov

Scale: NTS
Drawing No. SD–19
Date: 10/2011
1. Tank shall have a minimum capacity sufficient to pre-treat the maximum daily flow proposed and no less than 1000 gallons. Tank shall be constructed of precast concrete.

2. Interior of the tank and extension to grade manholes shall be coated with an epoxy petroleum resistant sealant. Exterior of the tank and extension grade manholes shall be coated with a waterproof foundation sealant. This includes the tank exteriors top and bottom.

3. Structural seam of the tank shall be filled with non-shrinking cement or water plug and coated with a waterproof sealant.

4. Voids between inlet and outlet piping of the tank shall be grouted with non-shrinking cement and coated with a waterproof sealant.

5. The tank shall have extensions to grade above the inlet and outlet piping. The extension shall have frames and manhole covers. The manholes, extensions and accesses to the tank shall be at least 24 inches in diameter.

6. The outlet piping shall utilize a tee-pipe on the interior of the tank. The tee-pipe shall be equipped with a stand pipe riser extending up the extension to grade but no closer than eight (8) inches from the manhole cover. The tee-pipe shall extend six (6) to twelve (12) inches from the bottom of the tank.

7. The inlet extension to grade shall be provided with a vent line which extends eight (8) feet above finished grade and properly secured to the building. The size of the vent shall be half the size of the outlet discharge line.

8. The horizontal structural seam of the tank shall be located above the static liquid level of the tank.

9. The incoming pipe shall not include any sources of domestic wastewater.

10. The outlet pipe shall be connected to the sanitary sewer.

11. The outlet pipe shall be at least the size of the inlet pipe or greater and at a minimum should be 4.0 inches in diameter.

12. If heavy piping, such as cast iron is used, all piping must be structurally secured.

13. The concrete covers provided by the oil separator manufacturer must be removed and discarded.
NOTE:

MINIMUM FOR ACCESS AND SERVICEABILITY.
INSIDE MANHOLE DIAMETER TO BE 48".
MANHOLE THAN DROP PIPE
STEP SHALL BE SET ON OPPOSITE SIDE OF

MANHOLE EFFLUENT PIPE
CROWN OF DROP ELBOW AND
DESIGN PLANS OR MATCH
INVERT TO BE AS SHOWN PER
PROVIDE 1/4 BEND AT BOTTOM
PROVIDE MINIMUM 2 SUPPORT
MAXIMUM SPACING 30" ON
BRACKETS FOR DROP PIPE

SANITARY SEWER PIPE
DUCTILE IRON OR PLASTIC
REMOVABLE 1/8" STAINLESS STEEL

FLEXIBLE MANHOLE CONNECTION

PROVIDE SUPPORT BRACKET BELOW
SHOWN PER DESIGN PLANS AS
PRECAST MANHOLE SIZE AS

PROVIDE SMOOTH FLOW TRANSITION
FLOW INTO SHAPE OF INVERT TO
BELL OF 1/4 BEND. INCORPORATE

MANHOLE EFFLUENT PIPE
CROWN OF DROP ELBOW AND
DESIGN PLANS OR MATCH
INVERT TO BE AS SHOWN PER
PROVIDE 1/4 BEND AT BOTTOM
PROVIDE MINIMUM 2 SUPPORT
MAXIMUM SPACING 30" ON
BRACKETS FOR DROP PIPE

SANITARY SEWER PIPE
DUCTILE IRON OR PLASTIC
REMOVABLE 1/8" STAINLESS STEEL

FLEXIBLE MANHOLE CONNECTION
STAINLESS STEEL SPLASH PLATE

Explosion Sleeve/Bolts
W/2 1/2" Stainless Steel
Anchors to Manhole Wall
Stainless Steel Angle
3" x 2-1/2" x 3/16" x 8" long

Pipe Diameter
1/2 Pipe

Stainless Steel Plate
Removable 1/8 Stainless Steel Plate

Minus 1/8"
To be Pipe Bell LR
Splash Plate Radius

4-5/8" (9-1/2"
Varies

2 Bolt W/ Washers
Stainless Steel

3/8" x 2-1/2" Stainless Steel

1/2 x 3/4" Hex Bolt 1/2" Stud

1/2" x 3/4" Stud

1/2" x 3/4" x 3/4" Angle

SS Stud Bolt

SS Stud Bolt

SS Stud Bolt

SS Stud Bolt

SS Stud Bolt
1.) ALL UNDERGROUND AND UNDERWATER PIPING SHALL BE PVC SCHEDULE 40 WITH A MINIMUM DIAMETER OF 6 INCHES.

2.) ALL JOINTS SHALL BE CLEANED AND SECURELY GLUED BEFORE BEING PLACED IN THE WATER. ALL JOINTS UNDERGROUND OR UNDERWATER WILL BE SCREWED WITH STAINLESS STEEL SCREWS ON EVERY JOINT AT LEAST THREE PLACES. GLUING OF JOINTS ABOVE GROUND OR ABOVE WATER IS ACCEPTABLE.

3.) ALL PIPING EXTENDING INTO THE WATER SUPPLY SHALL BE SUPPORTED ON AND SECURED TO CONCRETE OR STONE BLOCKS AT LEAST EVERY 10 FEET. THE STRAINER PORTION SHOULD BE SET A MINIMUM OF 24 INCHES OFF THE BOTTOM OF THE WATER SUPPLY. THE STRAINER AND HYDRANT HEAD TO BE PURCHASED FROM THE CONNECTICUT WATER CO. AT THEIR COST.

4.) HYDRANT RISER SHALL BE PROTECTED BY TWO STEEL CONCRETE FILLED POST 6 INCHES IN DIAMETER, PLACED 24 INCHES ON EITHER SIDE OF THE RISER AND EXTEND 48 INCHES ABOVE THE FINISH GRADE. THE POSTS SHALL BE EMBEDDED IN CONCRETE AFTER THE HYDRANT IS ACCEPTED BY THE CONNECTICUT WATER CO. POST SHALL BE PAINTED SAFETY YELLOW WITH 6 INCH RED BAND AT THE TOP.
SUPPORT AS REQUIRED

SUITABLE BACKFILL

3/4" CRUSHED STONE

6"

12" MIN. IN ROCK

SPECIAL FOUNDATION IF REQUIRED BY ENGINEER

2'-0"

O.D.

2'-0"

TRENCH WIDTH = O.D. + 4'-0" MIN.

BOROUGH OF NAUGATUCK
ENGINEERING DEPARTMENT
STANDARD DETAIL

SD-53
WATER BAR OR WATER BREAK

BOTTOM OF WATER BAR CHANNEL

S = 1/4 IN./FT.

WATER BAR OR WATER BREAK

SECTION A

BOROUGH OF NAUGATUCK
ENGINEERING DEPARTMENT
STANDARD DETAIL

229 Church Street, Naugatuck, CT 06770 www.naugatuck-ct.gov

Scale: NTS
Drawing No. SD-55
Date: 10/2011
Plunge pool to be sized according to design plans.

Note:

- Flow
- Existing ground
- Diameter (Dia)
- Width (W) = 3 * Dia
- Length (L) = 6 * Dia

Moistened rip-rap

See design plans for pipe size & location.
NURSERY FURNISHED PLANT MATERIAL

HOSE CHAFFING GUARD AT FIRST BRANCING

TRUNK WRAPPING MATERIAL

WIRE GUYS, 3 PER TREE

TURNBUCKLES ON ALL GUYS

ATTACH ORANGE FLAGGING TO WIRE EVERY 6" IN AREAS WITH PEDESTRIAN TRAFFIC.

4" MULCH – DO NOT PLACE IN CONTACT WITH BARK

2"-3" SAUCER RIM

BACKFILL W/PLANTING SOIL MIXTURE

BURY DEADMEN BELOW GRADE

FOLD BACK BURLAP

LOosen SUBSOIL 6" BELOW BOTTOM OF PLANT PIT OR OVER EXCAVATE LEDGE TO 18" BELOW ROOT BALL & 24" AROUND ROOT BALL BACKFILL TOP SOIL

NOTE:
ALL TREES PLANTED WITHIN PARKING LOT ISLANDS SHALL BE INSTALLED WITH A ROOT BARRIER. (SEE TREE WELL DETAIL.)

TREe PLANTING

PLAN VIEW
TREE SPECIMEN

TWISTED WIRE & HOSE LOOP

10' LONG 2"X2" STAKE, 7' EXPOSED

PREPARED BACKFILL MIXTURE
3 CY TOPSOIL
1 BALE PEAT MOSS (5 CF)
1 CY WELL ROTTED, TWICE
TURNED MANURE

OPEN BURLAP BALL UP

GRANITE BLOCKS 4"X4"X8"
(BELGIAN BLOCKS)
W/ 1/2" SAND SWEPT JOINTS.
SLOPE TO PVC GRATE

4" PERF. PVC PIPE TO FINISHED GRADE
W/ GRATE (MIN 2) AT EACH TREE

MIN. 4" FROM BOTTOM OF BALL
TO TOP OF PIPE

1'-0"

INSTALL ROOT BARRIER
4" PERF. PVC PIPE
COMPACTED SUBGRADE

5' X 5' SQ.

BOROUGH OF NAUGATUCK
ENGINEERING DEPARTMENT
STANDARD DETAIL

Scale: NTS
Drawing No. SD-43
Date: 10/2011

229 Church Street, Naugatuck, CT 06770 www.naugatuck-ct.gov
STONE SLOPE

ENSURE SUBGRADE IS COMPACTED TO 95% PROCTOR DENSITY

FILTER FABRIC

SEED BETWEEN STONES

CHAMFER SLOPE AT 1:2 MAXIMUM

USE STONE EXISTING ON SITE

UNDISTURBED SOIL

NOTE:
STONE SLOPES OVER 2:1 GRADE REQUIRE DESIGN AND CERTIFICATION BY A PROFESSIONAL ENGINEER.

STONE SLOPE PAVING

INSTALL GEOTEXTILE FILTER FABRIC

MODIFIED RIPRAP 12" OR LARGER TO BE PLACED AND SET WITH BACKHOE OR EXCAVATOR

1.2 / 1 MAXIMUM
UNREINFORCED SEGMENTAL RETAINING WALL SECTION

PINNING DETAIL

Walls over 3’ in height require design and certification by professional engineer.
PUBLIC ROAD

50' MIN. ROADS
25' MIN. DRIVES

8" MINIMUM

CT DOT 2"

FILTER FABRIC

SEE STORMWATER MANUAL FOR SIZING FORMULA.
SILT FENCE INSTALLATION AT CATCH BASINS AT LOW POINTS

STORMWATER INLETS WHICH DO NOT DISCHARGE TO SEDIMENT TRAPS OR BASINS, MUST BE PROTECTED UNTIL THE TRIBUTARY AREAS ARE STABILIZED.

SEDIMENT MUST BE REMOVED FROM SILT SACK INLET PROTECTION AFTER EACH STORM EVENT.

HAY BALE FILTER INSTALLATION AT CATCH BASIN AT LOW POINTS

CATCH BASIN EROSION CONTROL
BOROUGH OF NAUGATUCK
ENGINEERING DEPARTMENT
STANDARD DETAIL
229 Church Street, Naugatuck, CT 06770 www.naugatuck-ct.gov

Scale: NTS

Drawing No. SD-26

Date: 10/2011

Manufacturer:
ACF ENVIRONMENTAL
2831 CARDWELL ROAD
RICHMOND, VA 23234
1-800-448-3636
HAY BALE BARRIERS SHOULD NOT BE USED FOR MORE THAN 3 MONTHS.

SEDIMENT MUST BE REMOVED WHEN ACCUMULATIONS REACH 1/3 THE ABOVE GROUND HEIGHT OF THE BARRIER.

ANY SECTION OF HAY BALE BARRIER WHICH HAS BEEN UNDERMINED OR TOPPED MUST BE IMMEDIATELY REPLACED WITH A ROCK FILTER OUTLET.
SET WOOD OR METAL POSTS 10 FEET APART.

EXCAVATE A 6"x6" TRENCH BEHIND POST LINE.

ANGLE 10° UPSLOPE FOR STABILITY AND SELF CLEANING.

GRADE OR SURFACE

POSTS

FLOW

NATIVE SOIL

1. 12" MIN. DEPTH

ATTACH 4"x4"—12 GAUGE WIRE MESH FENCING OR INDUSTRIAL NETTING TO POSTS

100°

3. ATTACH FILTER FABRIC TO THE WIRE FENCING AND EXTEND IT INTO THE TRENCH.

FILTER FABRIC

BACKFILL THE TRENCH AND COMPACT THE EXCAVATED SOIL.

INSTALLED MIN. HEIGHT 2'-6"

4. COMPACTED BACKFILL

NOTE:
FENCE TO BE INSTALLED PRIOR TO CONSTRUCTION.
PRESHIPPED UNITS ALSO MAY BE USED, INSTALLED AS INDICATED.
TO BE INSTALLED AT DRAINAGE DITCH OR BROOK CROSSINGS

POINTS "A" SHOULD BE HIGHER THAN POINTS "B"

HAY BALE SEDIMENT CHECK DAM
BOROUGH OF NAUGATUCK
ENGINEERING DEPARTMENT
STANDARD DETAIL

Scale: NTS
Drawing No.: SD-42
Date: 10/2011

229 Church Street, Naugatuck, CT 06770 www.naugatuck-ct.gov
ANCHOR WITH TWO 1" x 1" x 3' STAKES EACH BALE

EXISTING GRADE

EMBED 6"

20" MIN.

5' MIN. OR AS SHOWN ON PLAN

SLOPE

SIDE SECTION

NOTES:
1. POST SPACE EMBEDMENT VARIES BASED ON THE FABRIC MANUFACTURER'S REQUIREMENTS

2. WHEN USING SILT FENCE ALONG TOE OF SLOPE, ADD WINGS TO PREVENT SEDIMENT FROM MOVING ALONG THE FENCE AND OFF THE SITE

FILTER FABRIC

LOCATE WINGS AS REQUIRED (SEE NOTE 2)

POST OR OTHER SUITABLE MOUNTING (SEE NOTE 1)

HAY BALES

ELEVATION

ANCHOR WITH TWO 1" x 1" x 3' STAKES EACH BALE

PLAN

BALES TO BUTT TOGETHER

5' MIN. OR AS SHOWN ON PLAN

SLOPE TO TOE

17" MIN.

WINGS TO BE PLACED AT 150' INTERVALS ALONG SLOPE LIMIT AND AT TRANSITIONS BETWEEN CUT & FILL SLOPES

SEEDIMENT CONTROL SYSTEMS

BOROUGH OF NAUGATUCK ENGINEERING DEPARTMENT STANDARD DETAIL

229 Church Street, Naugatuck, CT 06770 www.naugatuck-ct.gov

Scale: NTS

Drawing No. SD-68

Date: 10/2011
CHAIN LINK DOUBLE SWING GATE

- Gate Frame (Typ).
- Gate Hinge (Typ).
- Truss Rod (Typ).
- Mid. Rail (Typ).
- Top Rail (Typ).

As shown on plans.

With Agravel and

See Chain Link Fence.

Detail (Typ.)

Truss Rod (Typ).

Adjusting Unit (Typ.)
NOTE:
TIMBER TO BE .4 CCA
SOUTHERN YELLOW PINE
NOTES:

1) Diameter and material for pipes used as bollards should be chosen based on vehicular traffic in the bollard area, and the loads likely to be applied.